Building Lossy Trapdoor Functions from Lossy Encryption

نویسندگان

  • Brett Hemenway
  • Rafail Ostrovsky
چکیده

Injective one-way trapdoor functions are one of the most fundamental cryptographic primitives. In this work we show how to derandomize lossy encryption (with long messages) to obtain lossy trapdoor functions, and hence injective one-way trapdoor functions. Bellare, Halevi, Sahai and Vadhan (CRYPTO ’98) showed that if Enc is an IND-CPA secure cryptosystem, and H is a random oracle, then x 7→ Enc(x,H(x)) is an injective trapdoor function. In this work, we show that if Enc is a lossy encryption with messages at least 1-bit longer than randomness, and h is a pairwise independent hash function, then x 7→ Enc(x, h(x)) is a lossy trapdoor function, and hence also an injective trapdoor function. The works of Peikert, Vaikuntanathan and Waters and Hemenway, Libert, Ostrovsky and Vergnaud showed that statistically-hiding 2-round Oblivious Transfer (OT) is equivalent to Lossy Encryption. In their construction, if the sender randomness is shorter than the message in the OT, it will also be shorter than the message in the lossy encryption. This gives an alternate interpretation of our main result. In this language, we show that any 2-message statistically sender-private semi-honest oblivious transfer (OT) for strings longer than the sender randomness implies the existence of injective one-way trapdoor functions. This is in contrast to the black box separation of injective trapdoor functions from many common cryptographic protocols, e.g. IND-CCA encryption.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Building Injective Trapdoor Functions From Oblivious Transfer

Injective one-way trapdoor functions are one of the most fundamental cryptographic primitives. In this work we give a novel construction of injective trapdoor functions based on oblivious transfer for long strings. Our main result is to show that any 2-message statistically sender-private semihonest oblivious transfer (OT) for strings longer than the sender randomness implies the existence of i...

متن کامل

All-But-Many Lossy Trapdoor Functions

We put forward a generalization of lossy trapdoor functions (LTFs). Namely, all-but-many lossy trapdoor functions (ABM-LTFs) are LTFs that are parametrized with tags. Each tag can either be injective or lossy, which leads to an invertible or a lossy function. The interesting property of ABM-LTFs is that it is possible to generate an arbitrary number of lossy tags by means of a special trapdoor,...

متن کامل

A Classification of Lattice-based Trapdoor Functions

A trapdoor function is a one-way function with trapdoor, which is indispensable for getting a preimage of the function. In lattice-based cryptography, trapdoor function plays an important role in constructing the secure cryptographic schemes like identity-based encryption, homomorphic encryption, or homomorphic signature. There are three categories of trapdoor functions as standard trapdoor, lo...

متن کامل

Chosen-Ciphertext Security from Slightly Lossy Trapdoor Functions

Lossy Trapdoor Functions (LTDFs), introduced by Peikert and Waters (STOC 2008) have been useful for building many cryptographic primitives. In particular, by using an LTDF that loses a (1 − 1/ω(log n)) fraction of all its input bits, it is possible to achieve CCA security using the LTDF as a black-box. Unfortunately, not all candidate LTDFs achieve such a high level of lossiness. In this paper ...

متن کامل

Efficient Lossy Trapdoor Functions based on the Composite Residuosity Assumption

Lossy trapdoor functions (Peikert and Waters, STOC ’08) are an intriguing and powerful cryptographic primitive. Their main applications are simple and black-box constructions of chosen-ciphertext secure encryption, as well as collision-resistant hash functions and oblivious transfer. An appealing property of lossy trapdoor functions is the ability to realize them from a variety of number-theore...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IACR Cryptology ePrint Archive

دوره 2015  شماره 

صفحات  -

تاریخ انتشار 2013